Electricity-Carbon Interactive Optimal Dispatch of Multi-Virtual Power Plant Considering Integrated Demand Response

نویسندگان

چکیده

As new power systems and dual carbon policies develop, virtual plant cluster (VPPC) provides another reliable way to promote the efficient utilization of energy solve environmental pollution problems. To coordinated optimal operation low-carbon economic problem in multi-virtual plant, a (VPP) electricity-carbon interaction scheduling model considering integrated demand response (IDR) is proposed. Firstly, multi-VPP framework established. The electric quotas can realize complementarity, reduce waste operation. Secondly, order coordinate multiple types load VPPC further achieve operation, IDR mechanism based on user comprehensive satisfaction (UCS) electricity, heat as well hydrogen designed, which effectively maintain UCS within relatively high range. Finally, unit output scheme formulated minimize total cost solved using CPLEX solver. simulation results show that proposed method promotes among multi-VPP, increases consumption rate renewable sources economics reduces emissions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal Dispatch Model of Wind-Integrated Power System Considering Demand Response and Reliability

Demand response (DR) has become an impressive option in the deregulated power system due to its features of availability, quickness and applicability. In this paper, a novel economic dispatch model integrated with wind power is proposed, where incentive-based DR and reliability measures are taken into account. Compared with the conventional models, the proposed model considers customers’ power ...

متن کامل

Optimal emergency demand response program integrated with multi-objective dynamic economic emission dispatch problem

Nowadays, demand response programs (DRPs) play an important role in price reduction and reliability improvement. In this paper, an optimal integrated model for the emergency demand response program (EDRP) and dynamic economic emission dispatch (DEED) problem has been developed. Customer’s behavior is modeled based on the price elasticity matrix (PEM) by which the level of DRP is determined for ...

متن کامل

Optimal Operation of Integrated Energy Systems Considering Demand Response Program

This study presents an optimal framework for the operation of integrated energy systems using demand response programs. The main goal of integrated energy systems is to optimally supply various demands using different energy carriers such as electricity, heating, and cooling. Considering the power market price, this work investigates the effects of multiple energy storage devices and demand res...

متن کامل

Coordinated resource scheduling in a large scale virtual power plant considering demand response and energy storages

Virtual power plant (VPP) is an effective approach to aggregate distributed generation resources under a central control. This paper introduces a mixed-integer linear programming model for optimal scheduling of the internal resources of a large scale VPP in order to maximize its profit. The proposed model studies the effect of a demand response (DR) program on the scheduling of the VPP. The pro...

متن کامل

Probabilistic Multi Objective Optimal Reactive Power Dispatch Considering Load Uncertainties Using Monte Carlo Simulations

Optimal Reactive Power Dispatch (ORPD) is a multi-variable problem with nonlinear constraints and continuous/discrete decision variables. Due to the stochastic behavior of loads, the ORPD requires a probabilistic mathematical model. In this paper, Monte Carlo Simulation (MCS) is used for modeling of load uncertainties in the ORPD problem. The problem is formulated as a nonlinear constrained mul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energy Engineering

سال: 2023

ISSN: ['0199-8595', '1546-0118']

DOI: https://doi.org/10.32604/ee.2023.028500